Enzymatically inactive U(S)3 protein kinase of Marek's disease virus (MDV) is capable of depolymerizing F-actin but results in accumulation of virions in perinuclear invaginations and reduced virus growth.

نویسندگان

  • Daniel Schumacher
  • Caleb McKinney
  • Benedikt B Kaufer
  • Nikolaus Osterrieder
چکیده

Marek's disease (MD) is a highly contagious, lymphoproliferative disease of chickens caused by the cell-associated MD virus (MDV), a member of the alphaherpesvirus subfamily. In a previous study we showed that the absence of the serine/threonine protein kinase (pU(S)3) encoded in the MDV unique-short region resulted in accumulation of primarily enveloped virions in the perinuclear space and significant impairment of virus growth in vitro. It was also shown that pU(S)3 is involved in actin stress fiber breakdown [Schumacher, D., Tischer, B. K., Trapp, S., and Osterrieder, N. (2005). Here, we constructed a recombinant virus to test the importance of pU(S)3 kinase activity for MDV replication and its functions in actin rearrangement. Disruption of the kinase active site was achieved by substituting a lysine at position 220 with an alanine (K220A). Titers of a kinase-negative MDV mutant, 20U(S)3()K220A, were reduced when compared to parental virus similar to those of the U(S)3 deletion mutant. We were also able to demonstrate complete absence of phosphorylation of MDV-specific phosphoprotein pp38 in cells infected with the kinase-deficient virus, indicating that pp38 phosphorylation depends entirely on the kinase activity of pU(S)3. Enzymatically inactive pU(S)3()K220A was, however, still capable of mediating breakdown of the actin cytoskeleton in transfection studies, and this activity was indistinguishable from that of wild-type pU(S)3(). Furthermore, we demonstrated that pU(S)3 possesses anti-apoptotic activity, which is dependent on its kinase activity. Taken together, our results demonstrate that pU(S)3 and MDV-specific phosphoprotein pp38 represent a kinase-substrate pair and that growth impairment in the absence of pU(S)3 is caused by the absence of kinase activity. The unaltered disruption of F-actin by the K220A pU(S)3 mutant suggests that F-actin disassembly is unrelated to MDV growth restrictions in the absence of the unique-short protein kinase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Functionality of Marek’s Disease Virus US3 Protein

Marek’s disease (MD) is a lymphoproliferative disease of chickens caused by cell-associated Marek’s disease virus (MDV). The US3 protein kinase expressed by MDV has been shown to be involved in various stages of the viral life cycle. Deletion of the US3 open reading frame resulted in an accumulation of primarily enveloped virions in the perinuclear space which led to a reduction in viral titers...

متن کامل

Polymerase chain reaction for the detection and differentiation of Marek’s disease virus strains MDV-1 and HVT

Marek’s disease (MD) is a lymphoproliferative disease of chickens characterized by lymphocyticinfiltration of various organs. The present study was an attempt to use polymerase chain reaction (PCR) tooptimize a rapid and reliable assay for detection of MDV genome. Detection of serotype 1 of MDV (MDV-1)was confirmed by presence of a 200 bp DNA fragment as a PCR product. Differentiation of MDV-1 ...

متن کامل

Insertion of reticuloendotheliosis virus long terminal repeat into the genome of CVI988 strain of Marek's disease virus results in enhanced growth and protection.

Marek's disease (MD) is a lymphoproliferative disease of chickens caused by serotype 1 MD virus (MDV). Vaccination of commercial poultry has drastically reduced losses from MD, and the poultry industry cannot be sustained without the use of vaccines. Retrovirus insertion into herpesvirus genomes is an efficient process that alters the biological properties of herpesviruses. RM1, a virus derived...

متن کامل

Reconstitution of Marek's disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant.

The complete genome of Marek's disease virus serotype 1 (MDV-1) strain 584Ap80C was cloned in Escherichia coli as a bacterial artificial chromosome (BAC). BAC vector sequences were introduced into the U(S)2 locus of the MDV-1 genome by homologous recombination. Viral DNA containing the BAC vector was used to transform Escherichia coli strain DH10B, and several colonies harboring the complete MD...

متن کامل

Fluorescent tagging of VP22 in N-terminus reveals that VP22 favors Marek’s disease virus (MDV) virulence in chickens and allows morphogenesis study in MD tumor cells

Marek's disease virus (MDV) is an alpha-herpesvirus causing Marek's disease in chickens, mostly associated with T-cell lymphoma. VP22 is a tegument protein abundantly expressed in cells during the lytic cycle, which is essential for MDV spread in culture. Our aim was to generate a pathogenic MDV expressing a green fluorescent protein (EGFP) fused to the N-terminus of VP22 to better decipher the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Virology

دوره 375 1  شماره 

صفحات  -

تاریخ انتشار 2008